在工業生產領域,工業機器人檢測產品很大程度上依靠機器視覺,視覺的靈敏度將直接影響產品的檢測速度和檢測質量,因此設計一款質量過硬的視覺產品尤為重要,在設計過程中,設計人員會面臨視覺定位、測量、檢測和識別等諸多難題。
一、打光的穩定性
工業視覺應用一般分成四大類:定位、測量、檢測和識別,其中測量對光照的穩定性要求最高,因為光照只要發生10-20%的變化,測量結果將可能偏差出1-2個像素,這不是軟件的問題,這是光照變化,導致了圖像上邊緣位置發生了變化,即使再厲害的軟件也解決不了問題,必須從系統設計的角度,排除環境光的干擾,同時要保證主動照明光源的發光穩定性。當然通過硬件相機分辨率的提升也是提高精度,抗環境干擾的一種辦法了。比如之前的相機對應物空間尺寸是1個像素10um,而通過提升分辨率后變成1個像素5um,精度近似可以認為提升1倍,對環境的干擾自然增強了。
二、工件位置的不一致性
一般做測量的項目,無論是離線檢測,還是在線檢測,只要是全自動化的檢測設備,首先做的第一步工作都是要能找到待測目標物。每次待測目標物出現在拍攝視場中時,要能精確知道待測目標物在哪里,即使你使用一些機械夾具等,也不能特別高精度保證待測目標物每次都出現在同一位置的,這就需要用到定位功能,如果定位不準確,可能測量工具出現的位置就不準確,測量結果有時會有較大偏差。
三、標定
一般在高精度測量時需要做以下幾個標定:第一,光學畸變標定(如果您不是用的軟件鏡頭,一般都必須標定);第二,投影畸變的標定,也就是因為您安裝位置誤差代表的圖像畸變校正,三物像空間的標定,也就是具體算出每個像素對應物空間的尺寸。
不過目前的標定算法都是基于平面的標定,如果待測量的物理不是平面的,標定就會需要作一些特種算法來處理,通常的標定算法是解決不了的。
此外有些標定,因為不方面使用標定板,也必須設計特殊的標定方法,因此標定不一定能通過軟件中已有的標定算法全部解決。
四、物體的運動速度
如果被測量的物體不是靜止的,而是在運動狀態,那么一定要考慮運動模糊對圖像精度(模糊像素=物體運動速度*相機曝光時間),這也不是軟件能夠解決的。
五、軟件的測量精度
在測量應用中軟件的精度只能按照1/2—1/4個像素考慮,最好按照1/2,而不能向定位應用一樣達到1/10-1/30個像素精度,因為測量應用中軟件能夠從圖像上提取的特征點非常少。
機器視覺的運動速度和測量精度在整個產品中占有重要的位置,運動速度快慢以檢測能力是成反比的,運動越快檢測的質量效果相對較差,因此提高運動精度和檢測細節很重要。而且機器視覺易于實現信息集成,是實現計算機集成制造的基礎技術。
使用機器視覺系統五個主要原因:
重復性——機器可以以相同的方法一次一次的完成檢測工作而不會感到疲倦。與此相反,人眼每次檢測產品時都會有細微的不同,即使產品時完全相同的。
精確性——由于人眼有物理條件的限制,在精確性上機器有明顯的優點。即使人眼依靠放大鏡或顯微鏡來檢測產品,機器仍然會更加精確,因為它的精度能夠達到千分之一英寸。
速度——機器能夠更快的檢測產品。特別是當檢測高速運動的物體時,比如說生產線上,機器能夠提高生產效率。
客觀性——人眼檢測還有一個致命的缺陷,就是情緒帶來的主觀性,檢測結果會隨工人心情的好壞產生變化,而機器沒有喜怒哀樂,檢測的結果自然非常可觀可靠。
成本——由于機器比人快,一臺自動檢測機器能夠承擔好幾個人的任務。而且機器不需要停頓、不會生病、能夠連續工作,所以能夠極大的提高生產效率。
機器視覺系統的特點是提高生產的柔性和自動化程度。在一些不適合于人工作業的危險工作環境或人工視覺難以滿足要求的場合,常用機器視覺來替代人工視覺;同時在大批量工業生產過程中,用人工視覺檢查產品質量效率低且精度不高,用機器視覺檢測方法可以大大提高生產效率和生產的自動化程度。